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Abstract—This paper uses mathematics to analyze the 

challenges of geometrically noisy environments on triangulation. 
Given widely accepted algorithmic triangulation methods, such as 
O (n ln n) or a simpler O (n3) method, we can mathematically prove 
that triangulation of any two dimensional polygonal region is 
possible, albeit impractical in some cases. Further, we consider the 
implications of environments in which a z-axis is present, as seen 
in cellular triangulation. In many of the cases where consideration 
of the z-axis is necessary, we recognize the absence of a fixed or 
known point of origin and consider methods of addressing this 
challenge.  

I. TWO-DIMENSIONAL POLYGONAL TRIANGULATION 
 

HILE any two-dimensional polygonal figure can be 
triangulated, many polygonal figures can only be 

triangulated using an infinite number of triangles [1]. Through 
Meisters’ Two Ears Theorem, a diagonal triangulation of 
polygons with three or more vertices is possible, given that an 
interior triangle can be formed between the two end vertices 
(represented as A and C and in a polygon defined by vertices A, 
B, and C) [2].  
 A polygon of n vertices (n-gon), will have (n-2) triangles, 
formed by diagonals of known quantity, calculated as (n-3). 
This results from the ears formed by consecutive vertices, of 
which there may be no more than three. Thus, any three 
consecutive vertices will form an ear in a Jordan polygon, 
which can be represented as P=V1V2V3V4…VnVl [3]. 
Mathematically, the Proof of Lemma effectively shows that 
“the degree of each of the nodes is at most three because a 
triangle in a triangulation may be adjacent to at most three other 
triangles” [3]. 
 We can easily prove this for polygons with few vertices. For 
example, a polygon in which n=3 (triangle), will have (n-2) 
triangles, or one triangle. The same polygon will have (n-3) 
diagonals, or zero. For a polygon in which n=4 (rectangle), the 
same calculations apply. The rectangle will result in two 
triangles formed by one diagonal. In geometrically noisy 
environments, it may be necessary to triangulate using more 
than one diagonal, in which case triangulation may prove more 
complex.  
 Figure 1 displays four, out of infinite, possible methods of 
triangulation of a square. First, we see the most simplistic form 
of triangulation (two triangles formed by one diagonal). Each 
additional presented square shows increasingly complex forms 

 
 

of triangulation, formed by additional vertices. While a square 
does not require an infinite number of triangles for 
triangulation, it is possible to triangulate with no outer bound 
on the number of triangles formed, assuming that there is no 
such bound on the number of diagonals. Further, triangulation 
of a square may not only include right triangles, but also acute 
scalene triangles, equilateral triangles, isosceles triangles, and 
obtuse scalene triangles [4], as seen in the third and fourth 
squares presented in Figure 1 (below).  
 

 
Fig. 1. Triangulation of squares. 

 
 The same principles hold when dealing with triangulation of 
parallelograms, as seen in Figure 2 (below).  
 

 
Fig. 2. Triangulation of parallelograms. 

 
 While the triangulation of squares and parallelograms can 
largely be accomplished by bisecting opposite vertices of the 
polygon, triangulation of trapezoids cannot be accomplished in 
the same way, given the lack of horizontal symmetry. 
Regardless, as is the case with both squares and parallelograms, 
triangulation can be accomplished with only one diagonal seen 
in Figure 3 (below).  
 

 
Fig. 3. Triangulation of trapezoids. 

 
 It is reasonable to consider the reason why triangulation may 
be necessary, or at least helpful. Namely, in a figure of three or 
more vertices, such that points A, B, and C all exist in different 
coordinates on a two-dimensional plane, the distance of line 
segment AB plus the distance of line segment BC will be longer 
than the distance of the hypotenuse represented by side AC. 
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Thus, the distance between points for the purposes of 
calculations may be reduced through the use of triangulation, as 
proved by the Pythagorean Theorem [5].  

II. TWO-DIMENSIONAL CIRCULAR TRIANGULATION 
 

Proving that triangulation of polygonal figures is always 
possible in any two-dimensional plane is fairly simplistic 
mathematically, although triangulation itself may be tedious. In 
contrast, triangulation of a circle is significantly more complex, 
and requires many more inherent assumptions in the definition 
of circular triangulation, which is “a closed subset of the closed 
disc whose complement is a disjoint union of open triangles 
with vertices on the circumference of the circle” [6].  

True triangulation within a circle would require an infinite 
number of touching vertices, covering the entire circumference 
of the circle. This may prove impossible in a circle of unknown 
origin or size. Regardless, an approximation of triangulation 
can be accomplished with as few as three vertices, each located 
on the circumference of the circle. In this case, we can ignore 
arc length and focus solely on the polygonal region created by 
the vertices. Thus, in circular triangulation approximations, the 
same principles of two-dimensional polygonal triangulation 
apply. This is ideal, as two-dimensional triangulation is the 
most simple and fastest form of triangulation. A simplistic view 
of a three sided polygon (triangle) created from a circle with 
three vertices located on the circumference is found in Figure 4 
(below). As seen in the example, with three vertices, the 
accuracy of triangulation is low, as seen in the area of the space 
between the outer border of the triangle and the circumference 
of the circle as opposed to the area of the triangle itself.  

 

 
Fig. 4. Triangulation of circles. 

 
The accuracy of triangulation increases with each additional 

point added around the circumference of the circle. However, it 
is worth noting that the effects of this principle are diminishing, 
with the greatest increase in accuracy found in the shift from 
three vertices to four vertices.  

III. THREE-DIMENSIONAL TRIANGULATION 
 

Three-dimensional triangulation of straight-sided shapes 
follows many of the same principles of two-dimensional 
polygonal triangulation. In fact, a standard three-dimensional 
plane (seen in Figure 5) can be comprised of two x-y coordinate 
planes, in which one of the planes is inverted and rotated 180 
degrees around the x-axis.  

 
Fig. 5. Diagram of three-dimensional plane (X, Y, and Z). 

 
 Translating a three-dimensional object into two-dimensional 
planes can perhaps best be represented by a cube. The process 
requires two steps. First, a cross-section of the three-
dimensional objects must be  produced, which will result in the 
creation of two congruent triangular prisms (cross-sections). 
This step is observed in Figure 6 (below).  

 

 
Fig. 6. Diagram of cross-sectional cube (left), and the resulting 

triangular prism (right). 
 
 Second, we can recognize that the resulting cross-section is 
comprised entirely of two-dimensional polygons. First, we see 
two triangular sides, thus requiring no triangulation. Second, we 
see two parallelograms, each of which is easily triangulated as 
seen previously in this paper. Additionally, we see the five 
vertex polygonal region created by the cross section, which can 
be divided into two distinct triangles. These components are 
observed in Figure 7 (below).  

 

 
Fig. 7. Diagram of the two-dimensional components of a cube 

cross section. 
 

 Thus, the transition of the three-dimensional cube to six two-
dimensional polygons is complete and triangulation is now 
possible. While the same principles apply for other straight-
sided three dimensional objects, the translation of the three-
dimensional object to two-dimensional polygons may be more 
complex. Further, in geometrically noisy environments, it may 
be possible to triangulate using a number of polygons which 
may be in conflict with efficiency. An example of this 
possibility is seen in Figure 8 (below), in which case there are 
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four distinct cross-sections, each comprised of a four vertex 
figure, instead of the more simplistic approach of one cross-
section of five vertices as seen previously in Figure 6.  

 
Fig. 8. Diagram of square with multiple cross sections 

connected at vertices. 
 

In cases where the three-dimensional object is comprised of 
multiple smaller three-dimensional objects, it may be possible 
to first break the object into smaller three-dimensional objects 
before producing the cross-sections.  

 

IV. THE ADDITION OF GEOMETRIC NOISE 
 

Geometric noise may result in the necessity for more 
complex triangulation. Noise may prevent the bisecting of two 
dimensional polygonal regions, thus causing the number of 
vertices, n, to increase as the number of diagonals, d, increases. 
Further, triangulation of the point in which the noise originated 
may prove impossible, although it may be possible to detect the 
noise mathematically using triangulation [1].  

As an example, in the case of cellular triangulation, data 
signals can generally be transmitted off of a minimum of three 
cell towers, though the triangulation with noise may require 
more than (n-3) diagonals, and thus more than (n-2) triangles. 
This can be seen in Figure 9 (below).  

 

 
Fig. 9. Cellular triangulation with three towers. 

 
 If the cellular user is located within a geographically noisy 
environment, triangulation may prove easier with four or more 
cellular towers, as this allows for reasonably accurate two-
dimensional polygonal point of origin estimations. This can 
determine an estimation of the cellular user’s physical location, 
allowing for a second round of triangulation using three cellular 
towers, as seen previously in Figure 9. In this case, the first 
round of triangulation may stem from cellular towers of n 
vertices, where each vertex represents a cellular tower and 

where n is greater than or equal to four. A model of 
triangulation using four cellular towers is shown in Figure 10 
(below).  
 

 
Fig. 10. Cellular triangulation with four towers. 

 
 The initial accuracy of triangulation will depend on a variety 
of factors. One influential factor is the position of the cellular 
user in reference to the point of intersection between the two 
triangles aligned on the central axis of the polygonal plane 
created between four or more cellular towers. For example, in 
Figure 11 (below), the triangulation will take significantly 
longer and ultimately result in the creation of more triangles, 
given that the user is more distant from the point of origin.  
 

 
Fig. 11. Cellular triangulation with four towers, when the 

cellular user is distant from point of intersection. 
 
 While this analysis is done in the second dimension, we can 
assume that cellular triangulation will occur in a three-
dimensional environment. Thus, as previously discussed, it will 
be required to split the three-dimensional environment into 
standard three-dimensional objects, produce the relevant cross-
sections, and then translate the cross sections into two-
dimensional polygonal figures. By creating a cross section of 
the three-dimensional object, the surface area of the polygonal 
region can be calculated and geographically mapped, as is 
necessary in many cases of cellular triangulation.  
 When the analysis is done in the third dimension, we are 
faced with an additional challenge of not knowing the z-axis 
point of origin, due to fluctuating land heights relative to sea 
level. In these cases, triangular approximations in the second 
dimension are more practical and efficient. 
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